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Cell identification and sorting have been hot topics recently. However, most conventional approaches can only predict the
category of a single target, and lack the ability to perform multitarget tasks to provide coordinate information of the tar-
gets. This limits the development of high-throughput cell screening technologies. Fortunately, artificial intelligence (AI)
systems based on deep-learning algorithms provide the possibility to extract hidden features of cells from original image
information. Here, we demonstrate an AI-assisted multitarget processing system for cell identification and sorting. With
this system, each target cell can be swiftly and accurately identified in a mixture by extracting cell morphological features,
whereafter accurate cell sorting is achieved through noninvasive manipulation by optical tweezers. The AI-assisted model
shows promise in guiding the precise manipulation and intelligent detection of high-flux cells, thereby realizing semi-
automatic cell research.
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1. Introduction

As a crucial component in life research, cellular analysis helps to
reveal changes in cell differentiation, metabolism, gene expres-
sion[1,2], etc. Among the various technical approaches available,
the cell identification and sorting technologies provide amanner
to extract individual cell or specific cell groups. Cell identifica-
tion is the essential precondition for cell sorting. The typical
identification methods include immunomagnetic beads[3,4], cell
surface or fluorescence labeling[5], and so on. However, these
methods have certain limitations (for instance, the essential pre-
treatment labeling of samples, and the random changes in the
properties of target cells caused by the labels)[6,7]. These defects
thus affect their subsequent promotion and application.
The vision-based neural networks can directly use bright-field

imaging data for cell classification[8–10]. It not only overcomes
the limitations of traditional cell separation techniques, but also
improves the automation level of the system. Machine vision,
which has been widely used in facial recognition[11], autono-
mous driving[12], and image detection[13–16], is an extension
of human perception and allows computers to extract image fea-
ture information through convolutional neural networks
(CNNs) to obtain and perceive relevant information. By training
with a large data set, such an intelligent model can achieve
classification predictions within milliseconds. It thus greatly
improves work efficiency by reducing time consumption in

the identification process and eventually achieves efficient and
accurate identification and location of the targets. However, it
is only suitable for the classification prediction of a single cell,
and is not well-suited in coping with situations where multiple
targets exist in the field of view simultaneously.
As for the cell sorting, it is typically carried out by the feat of

gravity[17], centrifugal force[18], and sound waves[19–21]. In these
methods, high throughput operation is possible, but certain
cytoactive effects are inevitable, and precise manipulation is still
a challenge. The optical tweezers technique, due to its noncon-
tact and nondestructive characteristics, is a potent alternative for
this topic[22–24]. In this work, we demonstrate an artificial intel-
ligence (AI)-assisted cell identification and sorting system in a
microfluidic chip. In the system, we employ the you only look
once (YOLO) object detection method based on a one-step
CNN as the “brain” of the system. The YOLO model classifies
all cell targets in mixture sample and accurately locates the
target-cell’s position in the microfluidic channel at a millisecond
order. After adaptive training, the average inference speed of the
model is about 30 ms. On this basis, target cells are precisely
sorted into an individual chamber by optical tweezers, which
provides an independent space for cell cultivation and further
research. This work provides a powerful platform for cell iden-
tification and sorting and is expected to play a role in future
development of cellular studies.
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2. Methods

Figure 1 depicts schematic of the AI-assisted optical system for
cell identification and sorting. A 532 nm laser (MSL-FN-532-S,
400 mW) is first expanded to fit the size of a spatial light modu-
lator (SLM) (PLUTO-2.1, 60 Hz, HOLOEYE), and then a
spherical wave is generated by loading a predesigned hologram
onto the SLM. To fine-tune the focal field, the zeroth-order dif-
fraction beam is filtered, and the remaining first-order light field
is modulated by a 4f system before its incidence into the objec-
tive (40×, NA = 0.69). An attenuation device composed of a
half-wave plate and a polarizer is inserted in front of the objec-
tive lens, where the half-wave plate is mounted on a precise
rotating table to accurately modulate intensity of the focus field.
A microfluidic channel chip is employed to inject a sample sol-
ution, where the inlet and outlet of the chip are connected to the
microfluidic injection air pump, to keep the entire chip system
working in a closed state. By adjusting the injection pressure, the
flow rate of the solution inside the chip can be controlled.
Finally, the image is captured by CCD camera after filtering
the obtrusive laser signal and then is fetched by the AI program
for target detection.
The microfluidic chip is made of polydimethylsiloxane

(PDMS) bonding on a glass substrate, which includes five main
channels and twenty L-shaped subchambers. The L-shaped
chambers are designed to prevent cells from being washed
out when the microfluidics are in a high flow rate state in the
main channel. The mixture solution is prepared by mixing yeast
cells and polystyrene (PS) spheres with a diameter of 5 μm so
that they may possess similar sizes. The mixture solution is cen-
trifuged twice and then diluted with deionized water to avoid
blocking the channels.
Figure 2 depicts the experimental procedure of this work.

First, deionized water is used to fill the microfluidic channel
to drive out the air inside the channel and chambers [Fig. 2(a)].
Second, the mixture of yeast cells and PS spheres is injected at a

rate of 1 nL/s into the chip [Fig. 2(b)], and the mixture solution
will flow uniformly in the main channel sometime later.
Afterwards, image detection of the yeast cells and PS spheres
is performed [Fig. 2(c)]. Third, the YOLO algorithm is used
to detect the samples in real time. In this process, the captured
image is precompressed to a width of 1280 pixels. The black
boxes in Fig. 2(d) indicate a sliding window, which sequentially
selects a portion of the image for convolution with the convolu-
tional kernel to extract similar features. The features informa-
tion is extracted to generate feature vectors by a CNN.
Subsequently, the feature vectors are used to infer the category
probability and coordinate information of each target through a
fully connected layer [Fig. 2(d)]. Here, each feature vector rep-
resents the feature information of an anchor box. In order to
predict the target more accurately, every target is covered by
multi-overlapped anchor boxes, and the box with the highest
score is selected at the end after non-maximum suppression
(NMS)[25], as depicted in Fig. 2(e). Because of the prediction
inference information of the AI algorithm, it takes only 30 ms
to complete the inference prediction for each image frame.
Based on the identification results, the yeast cells of interest
can be proactively manipulated into the appointed subchamber
by optical tweezers [Fig. 2(f)], thus achieving the goal of sorting
individual cells from the mixture.

3. Results and Discussions

Based on the above AI-assisted object detection algorithms,
identification and localization of yeast cells in a mixture solution
are achievable, effectively improving the accuracy of the distin-
guishing ability for samples with similar morphological sizes. It
should be noted that the acquired images may lose detailed
information inside the cell when it is slightly out of focus, result-
ing in a feature loss and defective resolution. To address this
issue, a data set containing bright-field images under various
magnifications and focal lengths is precreated to enhance its
adaptability. Additionally, in order to reduce the probability
of misidentifying the background as particulate samples, images
withmicrofluidic channels in the background are requisite in the
training set. After 200 iterative training sessions, the total infer-
ence prediction and NMS time for a single image frame is about
30 ms. The confusion matrix of the algorithm model, as shown
in Fig. 3(a), indicates that almost all cells and PS spheres can be
correctly classified. The first column in the confusion matrix
represents all true instances of identification of the cells, where
95% of them are correctly predicted, while 5% are falsely pre-
dicted as the background. Here, FN represents the false nega-
tives, indicating the proportion of missed detections; while FP
is the false positives, reflecting the proportion of misclassifying
background as the target. Therefore, the data in the third column
indicate that, in the case of erroneously identifying the back-
ground as targets, 69% are misidentified as cells and 31% as
PS spheres. Significantly, background misidentification is a rare
event. There the third column only represents the ratio of the
two FP types. Generally, the mean average precision (mAP),

Fig. 1. Experimental configuration of the AI-assisted optical system for cell
identification and sorting.
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which is defined as the integral of the area under the precision-
recall curve[26], is employed to measure the accuracy of a model.
In our model, it has reached 0.98, being credible enough for tar-
get identification.
In the AI algorithm model, the video captured by the CCD

camera is used as the input source to calibrate the identification
efficiency in experiments (Visualization 1). Figure 3(b1) is the
full view of a discretionarily selected frame from the video.
For a clearer presentation, Figs. 3(b2) and 3(b3) are enlarged
views from another two frames within the labeled area by the
red box in Fig. 3(b1). Figure 3(c) shows the identification results

of the samples corresponding to Fig. 3(b). For a better presen-
tation, the bounding boxes surround the targets in Fig. 3(c) have
been expanded by six pixels outward from the actual predicted
box size, and the yeast cells and PS spheres are marked by blue
and magenta boxes, respectively. This clearly indicates that even
aggregated cells can be individually identified and accurately
located. In Fig. 3(c), the numbers alongside the labels denote
the identification scores of the targets, being composed of posi-
tion scores and category scores. The score signifies the complete-
ness of the target within the bounding box, which is the product
of the presence score and the accuracy score of targets within the

Fig. 2. Experimental procedure of the AI-assisted cell identification and sorting. (a) Infiltration of the microfluidic chip; (b) mixed sample solution injection into the
channel; (c) bright-field imaging of the mixture sample; (d) schematic of the model for image-based cell identification. The black boxes indicate sliding windows,
ConvNets is employed for feature extraction, while a fully connected network is used for classification and regression. (e) Identification results of the samples:
blue boxes mark cells; magenta boxes mark PS spheres; (f) sorting of target of interest by optical tweezers.

Fig. 3. Cell identification results. (a) Confusion matrix of the algorithm model; the background FP indicates the case of background being misidentified as targets,
while background FN indicates the missed detections. (b) and (c) Experimental results of target identification; (b) is the original image frame, and (c) is the
identification results in accordance with (b). Blue labels denote the yeast cells, and magenta the PS spheres. The numbers indicate the identification score of each
target, while the green arrow indicates the flow direction in the channel.
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bounding box. Therefore, a higher score indicates a better con-
fidence and recognition by the system for a given target.
Experimentally, all identification scores are around 0.8, meaning
that this model can accurately identify and locate the target cells.
The microfluidic chip preparation and operation can signifi-

cantly impact the final identification performance, where bub-
bles and impurities could lead to a false result. To avoid these
issues, here special precautions have been taken, including prop-
erly scoping the recognition range, enriching the data set,
improving the quality of microfluidic chips, etc. In addition,
the images captured by the CCD camera should be free from
ghosting artifacts to be correctly recognized and detected.
Hence, the maximum flow rate in experiments is jointly limited
by the acquisition speed of the CCD camera and the inference
time of the model.
Based on the above AI-assisted identification results, the iden-

tified yeast cells can be then sorted from the mixture and manip-
ulated into the subchamber by the optical tweezers. The force of
optical tweezers usually lies in the piconewton (pN) range; there-
fore, microfluidics in the channel maintain at a relatively low
flow rate (< 20 μm=s) in the experimental sorting process.
The flow rate is controlled by adjusting the air pressure at the
inlet and outlet, and the solution in the chip channel flows
smoothly and slowly. Figure 4 shows the experimental results of
sorting the identified yeast cells (Visualization 2). In Figs. 4(a)
and 4(b), the trapped cell inevitably moves upward due to the
scattering force. As a result, it appears slightly out of focus.
Nevertheless, our model still possesses a favorable adaptability
because it has been pretrained with morphological information
of numerous cells at different focal planes. Therefore, the

trapped yeast cell can still be identified in real time during
the manipulation process.
Figure 4 illustrates the entire process from cell recognition to

capture. The green arrows indicate the cells that have been suc-
cessfully trapped, and the red dots in Figs. 4(c) and 4(e) re-
present the moving trajectory of the trapped cell. By cycling
themanipulation procedure, multiple cells of interest can be suc-
cessfully sorted into the designated subchambers. Figure 4(f)
shows the multiple sorting results, which verifies the feasibility
and stability of our system.
In experiments, the entire channel undergoes a flow status.

Therefore, during the optical sorting process, new cells will
come into the view field. This indicates that conducting dyna-
mic sorting is feasible. For future developments, the optical
manipulation can be further combined with the automation
control program to project the transport tracks of trapped cells.
Furthermore, by virtue of the separate chambers, the sorted
cells can be used for intensive research, such as cell interactions
and cell proliferation.

4. Conclusion

In this work, we demonstrated an AI-assisted cell identification
and sorting system on a chip. It provides an achievable approach
to identify and transport target cells from a mixture solution.
The AI-assisted arithmetic model implements accurate identifi-
cation and localization of the targets successfully. On this basis,
as it can simultaneously locate the positions of all targets in the
view field, including the “obstacles,” it then guides the sorting

Fig. 4. Experimental results of sorting yeast cells in the mixture. (a)–(c) depict the first set of sorting processes; (d) and (e) represent repeated sorting processes;
and (f) is the final status for multiple cell sorting. The magenta boxes indicate PS particles, while the blue ones are yeast cells. The green arrows indicate the cells
that have been trapped by the optical tweezers.
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process for cells of interest to get around. In this system, the trap-
ping light field is modulated by the SLM, and dynamic concur-
rent manipulations are possible by generating switchable
multiple holographic fields. In addition, by virtue of an adaptive
dynamics programming control, an automatic system for cell
identification and sorting is also viable. Overall, this work pro-
vides a prototype of automatic cell-sorting technique and will
create opportunities for subsequent cell proliferation and other
analytical works.
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